Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 288(13): 3962-3972, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33064873

RESUMO

Mesenchymal stromal cells (MSCs) are nonhematopoietic cells that have been clinically explored as investigational cellular therapeutics for tissue injury regeneration and immune-mediated diseases. Their pharmaceutical properties arise from activation of endogenous receptors and transcription factors leading to a paracrine effect which mirror the biology of progenitors from which they arise. The aryl hydrocarbon receptor (AhR) is a transcription factor that has been extensively studied as an environmental sensor for xenobiotics, but recent findings suggest it can modulate immunological functions. Both genetic and pharmacological investigations revealed that MSCs express AhR and that it plays roles in inflammation, immunomodulation, and mesodermal plasticity of endogenous MSCs. Further, AhR has been shown to interact with key signaling cascades associated with these conditions. Therefore, AhR has potential to be an attractive target in both endogenous and culture-adapted MSCs for novel therapeutics to treat inflammation and other age-related disorders.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Compostos de Bifenilo/metabolismo , Humanos , Ligantes , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Choque Séptico/genética , Choque Séptico/metabolismo , Fatores de Transcrição/genética
2.
Br J Pharmacol ; 176(13): 2238-2249, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30924523

RESUMO

BACKGROUND AND PURPOSE: G protein-gated inwardly rectifying K+ (Kir 3) channels moderate the activity of excitable cells and have been implicated in neurological disorders and cardiac arrhythmias. Most neuronal Kir 3 channels consist of Kir 3.1 and Kir 3.2 subtypes, while cardiac Kir 3 channels consist of Kir 3.1 and Kir 3.4 subtypes. Previously, we identified a family of urea-containing Kir 3 channel activators, but these molecules exhibit suboptimal pharmacokinetic properties and modest selectivity for Kir 3.1/3.2 relative to Kir 3.1/3.4 channels. Here, we characterize a non-urea activator, VU0810464, which displays nanomolar potency as a Kir 3.1/3.2 activator, improved selectivity for neuronal Kir 3 channels, and improved brain penetration. EXPERIMENTAL APPROACH: We used whole-cell electrophysiology to measure the efficacy and potency of VU0810464 in neurons and the selectivity of VU0810464 for neuronal and cardiac Kir 3 channel subtypes. We tested VU0810464 in vivo in stress-induced hyperthermia and elevated plus maze paradigms. Parallel studies with ML297, the prototypical activator of Kir 3.1-containing Kir 3 channels, were performed to permit direct comparisons. KEY RESULTS: VU0810464 and ML297 exhibited comparable efficacy and potency as neuronal Kir 3 channel activators, but VU0810464 was more selective for neuronal Kir 3 channels. VU0810464, like ML297, reduced stress-induced hyperthermia in a Kir 3-dependent manner in mice. ML297, but not VU0810464, decreased anxiety-related behaviour as assessed with the elevated plus maze test. CONCLUSION AND IMPLICATIONS: VU0810464 represents a new class of Kir 3 channel activator with enhanced selectivity for Kir 3.1/3.2 channels. VU0810464 may be useful for examining Kir 3.1/3.2 channel contributions to complex behaviours and for probing the potential of Kir 3 channel-dependent manipulations to treat neurological disorders.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Neurônios/efeitos dos fármacos , Animais , Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Feminino , Febre/etiologia , Febre/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Nó Sinoatrial/citologia , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia
4.
Bioorg Med Chem Lett ; 29(6): 791-796, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30718161

RESUMO

The present study describes the discovery and characterization of a series of 5-aryl-2H-tetrazol-3-ylacetamides as G protein-gated inwardly-rectifying potassium (GIRK) channels activators. Working from an initial hit discovered during a high-throughput screening campaign, we identified a tetrazole scaffold that shifts away from the previously reported urea-based scaffolds while remaining effective GIRK1/2 channel activators. In addition, we evaluated the compounds in Tier 1 DMPK assays and have identified a (3-methyl-1H-pyrazol-1-yl)tetrahydrothiophene-1,1-dioxide head group that imparts interesting and unexpected microsomal stability compared to previously-reported pyrazole head groups.


Assuntos
Acetamidas/farmacologia , Descoberta de Drogas , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/agonistas , Pirazóis/farmacologia , Tetrazóis/farmacologia , Acetamidas/síntese química , Acetamidas/química , Animais , Células HEK293 , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/química
5.
ACS Chem Neurosci ; 10(3): 1294-1299, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30474955

RESUMO

G protein-gated inwardly rectifying potassium (GIRK) channels are potassium-selective ion channels. As their name suggests, GIRK channels are effectors of Gi/o G protein-couple receptors whereby activation of these GPCRs leads to increased GIRK channel activity resulting in decreased cellular excitability. In this way, GIRK channels play diverse roles in physiology as effectors of Gi/o-coupled GPCRs: peacemaking in the heart rate, modulation of hormone secretion in endocrine tissues, as well as numerous CNS functions including learning, memory, and addiction/reward. Notably, GIRK channels are widely expressed along the spinothalamic tract and are positioned to play roles in both ascending and descending pain pathways. More notably, GIRK channel knockout and knock-down studies have found that GIRK channels play a major role in the action of opioid analgesics which act predominantly through Gi/o-coupled, opioid-activated GPCRs (e.g., µ-opioid receptors). Recent advances in GIRK channel pharmacology have led to the development of small molecules that directly and selectively activate GIRK channels. Based on research implicating the involvement of GIRK channels in pain pathways and as effectors of opioid analgesics, we conducted a study to determine whether direct pharmacological activation of GIRK channels could produce analgesic efficacy and/or augment the analgesic efficacy morphine, an opioid receptor agonist capable of activating µ-opioid receptors as well as other opioid receptor subtypes. In the present study, we demonstrate that the small-molecule GIRK activator, VU0466551, has analgesic effects when dosed alone or in combination with submaximally effective doses of morphine.


Assuntos
Analgésicos/farmacologia , Morfina/farmacologia , Dor/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Pirazóis/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Formaldeído , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Células HEK293 , Temperatura Alta , Humanos , Masculino , Camundongos Endogâmicos C57BL , Dor/metabolismo
6.
Chemistry ; 24(36): 8985-8988, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29679472

RESUMO

This study reports the synthesis and testing of a family of rhodamine pro-fluorophores and an enzyme capable of converting pro-fluorophores to Rhodamine 110. We prepared a library of simple N,N'-diacyl rhodamines and investigated porcine liver esterase (PLE) as an enzyme to activate rhodamine-based pro-fluorophores. A PLE-expressing cell line generated an increase in fluorescence rapidly upon pro-fluorophore addition demonstrating the rhodamine pro-fluorophores are readily taken up and fluorescent upon PLE-mediated release. Rhodamine pro-fluorophore amides trifluoroacetamide (TFAm) and proponamide (PAm) appeared to be the best substrates using a cell-based assay using PLE expressing HEK293. Our pro-fluorophore series showed diffusion into live cells and resisted endogenous hydrolysis. The use of our engineered cell line containing the exogenous enzyme PLE demonstrated the rigorousness of amide masking when compared to cells not containing PLE. This simple and selective pro-fluorophore rhodamine pair with PLE offers the potential to be used in vitro and in vivo fluorescence based assays.


Assuntos
Esterases/metabolismo , Fígado/enzimologia , Rodaminas/metabolismo , Animais , Esterases/química , Esterases/genética , Células HEK293 , Humanos , Microscopia Confocal , Rodaminas/química , Espectrometria de Fluorescência , Suínos
7.
ACS Chem Neurosci ; 8(9): 1873-1879, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28697302

RESUMO

The G protein-gated inwardly-rectifying potassium channels (GIRK, Kir3) are a family of inward-rectifying potassium channels, and there is significant evidence supporting the roles of GIRKs in a number of physiological processes and as potential targets for numerous indications. Previously reported urea containing molecules as GIRK1/2 preferring activators have had significant pharmacokinetic (PK) liabilities. Here we report a novel series of 1H-pyrazolo-5-yl-2-phenylacetamides in an effort to improve upon the PK properties. This series of compounds display nanomolar potency as GIRK1/2 activators with improved brain distribution (rodent Kp > 0.6).


Assuntos
Acetamidas/farmacologia , Acetamidas/farmacocinética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Moduladores de Transporte de Membrana/farmacocinética , Pirazóis/farmacologia , Pirazóis/farmacocinética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células HEK293 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...